
Principles of
Operating Systems

Lecture 1 - Introduction and overview, operating system structure
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from : Silberschatz textbook authors, Anderson textbook
authors, John Kubiatowicz (Berkeley), John Ousterhout(Stanford), previous slides by Prof. Nalini

Venkatasubramanian, http://www-inst.eecs.berkeley.edu/~cs162/ and others]

1

mailto:ardalan@uci.edu

Staff

• Instructor
• Ardalan Amiri Sani (ardalan@uci.edu)

2

Staff
Teaching Assistants:
• Saehanseul Yi <saehansy@uci.edu>
• Farzad Habibi <habibif@uci.edu>
• Ashwin Gerard Colaco <acolaco@uci.edu>

3

Course logistics and details

• Course web page -
• https://www.ics.uci.edu/~ardalan/courses/os/index.html

• Discussions
• Wednesdays 1:00-1:50pm (SE2 1304)
• Wednesdays 2:00-2:50pm (SE2 1304)
• Wednesdays 5:00-5:50pm (MSTB 118)
• Wednesdays 6:00-6:50pm (MSTB 118)

4

Course logistics and details

• Textbook:
Operating System Concepts -- Ninth Edition
 A. Silberschatz, P.B. Galvin, and G. Gagne
 (Tenth, Eighth, Seventh, Sixth, and Fifth editions
 are fine as well).

• Other suggested Books
• Operating Systems: Principles and Practice, by T. Anderson and M. Dahlin (second

edition)
• Modern Operating Systems, by Tanenbaum (Third edition)
• Principles of Operating Systems, by L.F. Bic and A.C. Shaw, 2003.
• Operating Systems: Three Easy Pieces, by Remzi H. Arpaci-Dusseau and Andrea

C. Arpaci-Dusseau

5

Course logistics and details

•Homeworks and Assignments
• 4 written homeworks in the quarter
• 1 optional programming assignment (knowledge of C).

• Multistep assignment – don’t start in last week of classes!!!
• Late homework policy.

• Lose 10% of grade for every late hour.
• All submissions will be made using Gradescope

•Tests
• Midterm – Thursday, Week 6 (during class time)
• Final Exam – per UCI course catalog (Thu, 3/23,
1:30pm-3:30pm)

6

Grading Policy

•Will pick the best of the following two:
•Grade 1:

• Written Homeworks - 20%
• 4 written homeworks each worth 5% of the final grade.

• Project - 20% of the final grade (4% for lab0, 16% for lab1)
• Midterm - 25% of the final grade
• Final exam - 35% of the final grade

•Grade 2:
• Written Homeworks - 20%
• Midterm - 35% of the final grade
• Final exam - 45% of the final grade

•Curve will be used if needed. 7

Lecture Schedule

•Week 1
• Introduction to Operating Systems, Computer System Structures,

Operating System Structures

•Week 2
• Processes and Threads

•Week 3
• Processes and Threads, and CPU Scheduling

•Week 4
• Scheduling

•Week 5
• Process Synchronization

8

Lecture Schedule

•Week 6
• Deadlocks, Midterm exam

•Week 7
• Memory Management

•Week 8
• Memory Management, Virtual Memory

•Week 9
• File Systems Interface and Implementation

•Week 10
• I/O Subsystems

9

Classes I will most likely miss

• 2/23/2023: Need to attend HotMobile’23 as the
general chair
(Will announce later if other lectures are to be
missed)

• Will announce later the plan for missed lectures
• Sometimes, the TA will replace me on those dates

10

Office hours

• Instructor
• Thursdays 9:30am-10:30am (Zoom link on canvas)

• TA
• Tuesdays 4:00pm-5:00pm (Zoom link on Canvas)

Office hours will start on the second week of classes

11

Piazza

• https://piazza.com/uci/winter2023/compsci143a

12

https://piazza.com/uci/winter2023/compsci143a

Slides

• Will upload first draft of the slides for all of the week
on Tuesday

• Might (and most likely will) update slides for each
class before the class
• Will mention on the website which pages have been

updated

13

Overview

•What is an operating system?
•Operating systems history
•Computer system and operating system structure

14

What is an Operating System?

15

What is an Operating System?

•OS is the software that acts an intermediary between
the applications and computer hardware.

16

Computer System Components

•Hardware
• Provides basic computing resources (CPU, memory, I/O devices).

•Operating System
• Controls and coordinates the use of hardware among application programs.

•Application Programs
• Solve computing problems of users (compilers, database systems, video

games, business programs).

•Users
• People, other computers

17

Abstract View of System

Application Programs

Operating System

Computer
Hardware

User
1 User

2
User

3
User

n

compiler assembler Text editor Database
system

...

18

Operating system roles

•Referee
• Resource allocation among users, applications
• Isolation of different users, applications from each other
• Communication between users, applications

19

Operating system roles

•Illusionist
• Each application appears to have the entire machine to itself
• Infinite number of processors, (near) infinite amount of memory,
reliable storage, reliable network transport

20

Operating system roles

•Glue
• Libraries, user interface widgets, …
• Reduces cost of developing software

21

Example: file systems

•Referee
• Allocates storage space for files for each user
• Prevent users from accessing each other’s files without
permission

•Illusionist
• Files can grow (nearly) arbitrarily large
• Files persist even when the machine crashes in the middle of a
save

•Glue
• Named directories, printf, …

22

OS challenges

23

OS challenges

•Reliability
• Does the system do what it was designed to do?

24

OS challenges

•Availability
• What portion of the time is the system working?
• Mean Time To Failure (MTTF), Mean Time to Repair

25

OS challenges

•Security
• Can the system be compromised by an attacker?

26

OS challenges

•Privacy
• Data is accessible only to authorized users

27

OS challenges

•Performance
• Latency/response time

• How long does an operation take to complete?
• Throughput

• How many operations can be done per unit of time?
• Overhead

• How much extra work is done by the OS?
• Fairness

• How equal is the performance received by different users?
• Predictability

• How consistent is the performance over time?

28

OS challenges

•Portability
• For programs:

• Application programming interface (API)
• For the kernel

• Hardware abstraction layer

29

OS needs to keep pace with
hardware improvements

30

$/

Why should I study Operating
Systems?

31

Why should I study Operating
Systems?

• Need to understand interaction between the hardware and
software

• Need to understand basic principles in the design of computer
systems

• efficient resource management, security, etc.

32

Why should I study Operating
Systems?

• Because it enables you to do things that are difficult/impossible
otherwise.

33

Example: Rio: I/O sharing implemented in
the operating system kernel

34

(Slides on Rio are not part of the course material)

Observation: I/O devices important for
personal computers

35

A personal computer today
● Super AMOLED display
● Capacitive touchscreen (multitouch)
● Audio (speaker, microphone)
● Vibration
● S pen
● 13 MP front camera
● 2 MP back camera
● Accelerometer
● Gyroscope
● Proximity sensor
● Compass
● Barometer
● Temperature sensor
● Humidity sensor
● Gesture sensor
● GPS
● 4G LTE
● NFC
● WiFi
● Bluetooth
● Infrared
● 64 GB internal storage (extended by microSD)
● Adreno 330 GPU
● Hexagon DSP
● Multimedia processor

● 64 GB internal storage (extended by microSD)
● 4G LTE
● S pen
● Super AMOLED display (1080 x 1920 pixels, 5.7 inches

(~386 ppi pixel density))
● capacitive touchscreen, 16M colors, multitouch
● speaker, mic, audio jack
● vibration
● NFC
● WiFi
● bluetooth
● Infrared
● 13 MP front camera
● 2 MP back camera
● Adreno 330 GPU
● Accelerometer
● gyro
● proximity sensor
● compass
● barometer
● temperature sensor
● humidity sensor
● gesture sensor
● GPS
● Hexagon DSP
● Audio/Video HW accelerator
● Multimedia processor36

● Super AMOLED display
● Capacitive touchscreen (multitouch)
● Audio (speaker, microphone)
● Vibration
● S pen
● 13 MP front camera
● 2 MP back camera
● Accelerometer
● Gyroscope
● Proximity sensor
● Compass
● Barometer
● Temperature sensor
● Humidity sensor
● Gesture sensor
● GPS
● 4G LTE
● NFC
● WiFi
● Bluetooth
● Infrared
● 64 GB internal storage (extended by microSD)
● Adreno 330 GPU
● Hexagon DSP
● Multimedia processor

A personal computer today

interaction

37

● Super AMOLED display
● Capacitive touchscreen (multitouch)
● Audio (speaker, microphone)
● Vibration
● S pen
● 13 MP front camera
● 2 MP back camera
● Accelerometer
● Gyroscope
● Proximity sensor
● Compass
● Barometer
● Temperature sensor
● Humidity sensor
● Gesture sensor
● GPS
● 4G LTE
● NFC
● WiFi
● Bluetooth
● Infrared
● 64 GB internal storage (extended by microSD)
● Adreno 330 GPU
● Hexagon DSP
● Multimedia processor

A personal computer today

sensing

38

● Super AMOLED display
● Capacitive touchscreen (multitouch)
● Audio (speaker, microphone)
● Vibration
● S pen
● 13 MP front camera
● 2 MP back camera
● Accelerometer
● Gyroscope
● Proximity sensor
● Compass
● Barometer
● Temperature sensor
● Humidity sensor
● Gesture sensor
● GPS
● 4G LTE
● NFC
● WiFi
● Bluetooth
● Infrared
● 64 GB internal storage (extended by microSD)
● Adreno 330 GPU
● Hexagon DSP
● Multimedia processor

A personal computer today

connectivity,
storage

39

● Super AMOLED display
● Capacitive touchscreen (multitouch)
● Audio (speaker, microphone)
● Vibration
● S pen
● 13 MP front camera
● 2 MP back camera
● Accelerometer
● Gyroscope
● Proximity sensor
● Compass
● Barometer
● Temperature sensor
● Humidity sensor
● Gesture sensor
● GPS
● 4G LTE
● NFC
● WiFi
● Bluetooth
● Infrared
● 64 GB internal storage (extended by microSD)
● Adreno 330 GPU
● Hexagon DSP
● Multimedia processor

A personal computer today

acceleration
40

Multiple computers for unique I/O

41

Multiple computers for unique I/O

42

Multiple computers for unique I/O

43

I/O sharing

44

How to build this?

Application

Device driver

Daemons, Libraries

I/O device

User space
Kernel

45

Application layer

Application

Device driver

Daemons, Libraries

I/O device

User space
Kernel

Application

Daemons, Libraries

User space
Kernel

Device driver

I/O device
● IP Webcam
● Wi-Fi Speaker
● MightyText

ServerClient 46

Do not meet our criteria

Application

Device driver

Daemons, Libraries

I/O device

User space
Kernel

• High engineering effort
• No support for legacy applications
• No support for all I/O device features

47

Rio: I/O servers for sharing I/O between
mobile systems

48Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong, "Rio: A System Solution for Sharing I/O between Mobile
Systems," in Proc. ACM MobiSys, June 2014. (Best Paper Award)

Key idea: device files as the boundary

I/O devices abstracted as
(device) files in Unix-like OSes

e.g., /dev/foo

49

Application

Device file
/dev/foo

User space
Kernel

File operations

I/O device

Device driver

Key idea: device files as the boundary

50

I/O device

Client Server

Application

User space
Kernel

File operations User space
Kernel

Device file
/dev/foo

Device driver

Key idea: device files as the boundary

51

I/O device

Client Server

Application

User space
Kernel

File operations User space
Kernel

Device file
/dev/foo

Device driver

Virtual device file
/dev/foo

Key idea: device files as the boundary

52

I/O device

Client Server

Wireless
Link

Application

User space
Kernel

File operations User space
Kernel

Device file
/dev/foo

Device driver

Virtual device file
/dev/foo

Key idea: device files as the boundary

StubStub

53

Video demo of Rio

54

https://www.yecl.org/rio.html

(end of slides on Rio)

https://www.yecl.org/rio.html

Operating systems are everywhere

55

Operating systems are everywhere

56

Operating systems are everywhere

57

Operating systems are everywhere

58

Overview

•What is an operating system?
•Operating systems history
•Computer system and operating system structure

59

Operating systems history (start)

•Early Systems
•Simple Batch Systems
•Multiprogrammed Batch Systems
•Time-sharing Systems
•Personal and Mobile Computer Systems

(The slides on the OS history are for your own study and
won’t be used in the exams.)

60

Early Systems - Bare Machine
(1950s)

•Structure
• Large machines run from console
• Single user system

• Programmer/User as operator
• Punched cards, paper tape,

and magnetic tape

•Early software
• Assemblers, compilers, linkers, loaders,
 device drivers, libraries of common subroutines.

•Secure execution
•Inefficient use of expensive resources

• Low CPU utilization, high setup time.

From John Ousterhout slides

Hardware – expensive ; Human – cheap

61

Batch Systems (1960’s)
• Reduce setup time by batching jobs with similar requirements.
• Hire an operator

• User is NOT the operator
• Automatic job sequencing

• Forms a rudimentary OS.
• Resident Monitor

• Holds initial control, control transfers to job
 and then back to monitor.

• Problem
• Need to distinguish job from job and data from program.
• Special cards indicate what to do.
• User program prevented from performing I/O

From John Ousterhout slides

62

Batch Systems (1960’s)

• Problem: I/O is slow!
• Solutions to speed up I/O:
• Offline Processing: Reading from cards to tapes and writing from tapes
to line printers were done offline.

• User submits card deck
• cards put on tape
• tape processed by operator
• output written to tape
• tape printed on printer
• Separate user from computer

• Problems
• Long turnaround time - up to 2 DAYS!!!
• Low CPU utilization

• I/O and CPU could not overlap; slow mechanical devices.

IBM 7094

From John Ousterhout slides

63

Batch Systems (1960’s)

• Solution to speed up I/O: Spooling (Simultaneous Peripheral
Operation On-Line)

• Use disk (random-access device) as large storage for reading as many
input files as possible and storing output files until output devices are ready
to accept them.

• Allows overlap - I/O for multiple jobs as well as computation of another.
• Introduces notion of a job pool that allows OS to choose next job to run so

as to increase CPU utilization.

64

Speeding up I/O: Direct Memory
Access (DMA)

65

• Data moved directly between I/O devices and memory
• CPU can work on other tasks

Memory

CPU
I/O devicesI/O instructions

Batch Systems - I/O completion

•How do we know that I/O is complete?
• Polling:

• Device sets a flag when it is busy.
• Program tests the flag in a loop waiting for completion of I/O.

• Interrupts:
• On completion of I/O, device forces CPU to jump to a specific

instruction address that contains the interrupt service routine.
• After the interrupt has been processed, CPU returns to code it was

executing prior to servicing the interrupt.

66

Multiprogramming

•Use interrupts to run multiple programs simultaneously
• When a program performs I/O, instead of polling, execute another

program till interrupt is received.

•Requires secure memory, I/O for each program.
•Requires intervention if program infinite loops.
•Requires CPU scheduling to choose the next job to run.

67

Timesharing

•Programs queued for execution in FIFO order.
•Like multiprogramming, but timer device interrupts after
a quantum (timeslice).

• Interrupted program is returned to end of FIFO
• Next program is taken from head of FIFO

•Control card interpreter replaced by command
language interpreter.

Hardware – getting cheaper; Human – getting expensive

68

Timesharing (cont.)

•Interactive (action/response)
• when OS finishes execution of one command, it seeks the next
control statement from user.

•File systems
• online filesystem is required for users to access data and code.

•Virtual memory
• Job is swapped in and out of memory to disk.

69

Personal Computing Systems -
desktops

•Single user systems, portable.
•I/O devices - keyboards, mice, display screens, small
printers.

•Single user systems may not need advanced CPU
utilization or protection features.

•Advantages:
• user convenience, responsiveness, ubiquitous

Hardware – cheap ; Human – expensive

70

Personal Computing Systems -
Mobile and wearable Systems

•Single user, multiple computers
•Laptops
•Smartphones
•Tablets
•Smart glasses
•Smart watches

(End of slides on history)

Hardware – very cheap ; Human – very expensive

71

Overview

•What is an operating system?
•Operating systems history
•Computer system and operating system structure

72

Computer System & OS Structures

•Computer System Organization

•Process abstraction and hardware protection

•System call and OS services

•Storage architecture

•OS organization

•OS tasks

•Virtual Machines

73

Computer System Organization

74

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

CPU execution

• Execution sequence:
• Fetch Instruction at PC
• Decode
• Execute (possibly using registers)
• Write results to registers/mem
• PC = Next Instruction(PC)
• Repeat

PC
PC
PC
PC

From Berkeley OS course
75

Computer System Organization

76

I/O devices

I/O devices

•I/O devices and the CPU execute concurrently.
•Each device controller is in charge of a particular
device type

•Each device controller has a local buffer. I/O is from the
device to local buffer of controller

•CPU moves data from/to main memory to/from the
local buffers

77

Direct Memory Access (DMA)

Memory

CPU
I/O devicesI/O instructions

78

• Typically used for I/O devices
with a lot of data to transfer (in
order to reduce load on CPU).

• Device controller transfers
blocks of data to/from local
buffer directly to main memory
without CPU intervention.

• Only one interrupt is generated
per block, rather than one per
byte (or word).

I/O completion

•How do we know that I/O is complete (e.g., data is
ready in local buffer or DMA is complete)?

79

I/O completion

•How do we know that I/O is complete (e.g., data is
ready in local buffer or DMA is complete)?

• Polling:
• Device controller sets a flag when it is busy.
• Program tests the flag in a loop waiting for completion of I/O.

• Interrupts:
• On completion of I/O, device controller interrupts CPU.

80

Interrupts

•Interrupt transfers control to the interrupt service routine
• Interrupt Service Routine: Segments of code that determine action
to be taken for interrupt.

•Determining the type of interrupt
• Polling: same interrupt handler called for all interrupts, which then
polls all devices to figure out the reason for the interrupt

• Interrupt Vector Table: different interrupt handlers will be executed
for different interrupts

81

Interrupt handling

•OS preserves the state of the CPU

82

Interrupt handling

•OS preserves the state of the CPU
• stores registers and the program counter (address of interrupted
instruction).

•What happens to a new interrupt when the CPU is
handling one interrupt?

83

Interrupt handling

•OS preserves the state of the CPU
• stores registers and the program counter (address of interrupted
instruction).

•What happens to a new interrupt when the CPU is
handling one interrupt?

• Incoming interrupts can be disabled (masked) while another
interrupt is being processed. In this case, incoming interrupts may
be lost or may be buffered until they can be delivered.

• Incoming interrupts are delivered, i.e., nested interrupts.

84

Process Abstraction

85

• Process: an instance of a program, running with limited
rights

86

Process Abstraction

• Process: an instance of a program, running with limited
rights
– Thread: a sequence of instructions within a process

• Potentially many threads per process (for now 1:1)
– Each process has a set of rights

• Memory that the process can access (address
space)

• Other permissions the process has (e.g., which
system calls it can make, what files it can access)

87

Process Abstraction

How to limit process rights?

88

Hardware Protection

•CPU Protection:
•Dual Mode Operation
•Timer interrupts

•Memory Protection

•I/O Protection

89

Should a process be able to execute
any instructions?

90

Should a process be able to execute
any instructions?

• No
• Can alter critical system configurations and violate

permissions
• e.g., instructions to alter memory address spaces
• e.g., instructions to program I/O devices

• How to prevent?

91

Dual-mode operation

• Provide hardware support to differentiate between at
least two modes of operation:

1. User mode -- execution done on behalf of a user.
2. Kernel mode (monitor/supervisor/system mode) --

execution done on behalf of operating system.
• “Privileged” instructions are only executable in the
kernel mode

• Executing privileged instructions in the user mode
“traps” into the kernel mode
• Trap is a software generated interrupt caused either by an error or

a user request

92

Dual-mode operation(cont.)
• Mode bit added to computer
hardware to indicate the current
mode: kernel(0) or user(1).

• When an interrupt or trap
occurs, hardware switches to
kernel mode.

User

Kernel

Set
user
mode

Interrupt (i.e., HW interrupt),
Trap (i.e., exception or SW
interrupt)

93

CPU Protection

•How to prevent a process from executing
indefinitely?

94

CPU Protection

•Timer - interrupts computer after specified period to
ensure that OS maintains control.

•Timer is decremented every clock tick.
•When timer reaches a value of 0, an interrupt occurs.

•Timer is commonly used to implement time sharing.
•Timer is also used to compute the current time.
•Should programming the timer require privileged
instructions?

95

CPU Protection

•Timer - interrupts computer after specified period to
ensure that OS maintains control.

•Timer is decremented every clock tick.
•When timer reaches a value of 0, an interrupt occurs.

•Timer is commonly used to implement time sharing.
•Timer is also used to compute the current time.
•Should programming the timer require privileged
instructions? Yes!

96

How to isolate memory access?

97

P
rocess A

ddress S
pace

Process address space

• Address space ⇒ the set of accessible
addresses + state associated with them:

• For a 32-bit processor there are 232 = 4 billion
addresses

• What happens when you read or write to an
address?

• Perhaps Nothing
• Perhaps acts like regular memory
• Perhaps ignores writes
• Perhaps causes I/O operation

• (Memory-mapped I/O)
• Perhaps causes exception (fault)

98

(code)

Virtual Address

99

Providing the Illusion of Separate Address Spaces

Process 1
Virtual

Address
Space 1

Process 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

kernel heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

kernel code

kernel dataTranslation Map 1 Translation Map 2

Physical Address Space

Load new Translation Map on Switch

100

Address translation and memory
protection

Processor Translation

Physical
Memory

Data

Data

Valid

Invalid
Raise
Exception

Physical
address

101

Virtual
address

Memory Protection

• When a process is running, only memory in that process
address space must be accessible.

• When executing in kernel mode, the kernel has
unrestricted access to all memory.

• Must provide memory protection at least for the interrupt
vector and the interrupt service routines.

102

Memory Protection: base and bounds
• To provide memory protection, add

two registers that determine the
range of legal addresses a program
may address.

• Base Register - holds smallest
legal physical memory address.

• Limit register - contains the size of
the range.

• Memory outside the defined range
is protected.

0

300000

420000

1000000

300000

120000

Base register

Limit register

103

Virtual Address translation using the
Base and Bounds method

104

Should load instructions for the base and limit
registers be privileged instructions?

Virtual Address translation using the
Base and Bounds method

105

Should load instructions for the base and limit
registers be privileged instructions? Yes!

I/O Protection

•All I/O instructions are privileged instructions.

•Must ensure that a user program could never gain
control of the computer in kernel mode, e.g., a user
program must not be able to store a new address in
the interrupt vector.

106

Question

•Given the I/O instructions are privileged, how do
users perform I/O?

107

Question

•Given the I/O instructions are privileged, how do
users perform I/O?

•Via system calls - the method used by a process to
request action by the operating system.

108

System Calls
• User code can issue a syscall, which causes a trap
• Kernel handles the syscall

109

System Calls
• Interface between applications
and the kernel.

• Application uses an assembly
instruction to trap into the kernel

• Some higher level languages
provide wrappers for system
calls (e.g., C)

• System calls pass parameters
between an application and OS
via registers or memory,
memory tables or stack

• Linux has about 300 system
calls

• read(), write(), open(), close(),
fork(), exec(), ioctl(),…..

110

System services or system programs

•Components of the OS that provide help for
program development and execution.

• Command Interpreter (i.e., shell) - parses commands and
executes other programs

• Window management
• System libraries, e.g., libc

111

Storage Device Hierarchy

112

Storage Structure

•Main memory - only large storage media that the
CPU can access directly.

•Secondary storage - has large nonvolatile storage
capacity.

•Example: Magnetic disks - rigid metal or glass platters
covered with magnetic recording material.

• Disk surface is logically divided into tracks, subdivided into
sectors.

• Disk controller determines logical interaction between device
and computer.

113

Storage Hierarchy

•Storage systems are organized in a hierarchy
based on

•Storage space
•Access time
•Cost
•Volatility

•Caching - process of copying information into faster
storage system; main memory can be viewed as
fast cache for secondary storage.

114

Operating Systems: How are they
organized?

•Simple
• Only one or two levels of code

•Layered
• Lower levels independent of upper levels

•Modular
• Core kernel with Dynamically loadable modules

•Microkernel
• OS built from many user-level processes

115

Monolithic vs. Microkernel OS
•Monolithic OSes have large kernels with a lot of components

• Linux, Windows, Mac
ation (parts of kernel protected from other parts)

• M

116

117Slide adapted from http://web.cecs.pdx.edu/~walpole/class/cs533/fall2015/home.html

Monolithic vs. Microkernel OS

http://web.cecs.pdx.edu/~walpole/class/cs533/fall2015/home.html

Monolithic vs. Microkernel OS
•Monolithic OSes have large kernels with a lot of components

• Linux, Windows, Mac
•Microkernels moves as much from the kernel into “user”
space

• Small core OS components running at kernel level
• OS Services built from many independent user-level processes
• Communication between modules with message passing
• Benefits:

• Easier to extend a microkernel
• Easier to port OS to new architectures
• More reliable and more secure (less code is running in kernel

mode)
• Detriments:

• Performance overhead severe for naïve implementation
ation (parts of kernel protected from other parts)

• M

118

119Slide adapted from http://web.cecs.pdx.edu/~walpole/class/cs533/fall2015/home.html

Monolithic vs. Microkernel OS

http://web.cecs.pdx.edu/~walpole/class/cs533/fall2015/home.html

OS Task: Process Management

•Process - fundamental concept in OS
•Process is an instance of a program in execution.
•Process needs resources - CPU time, memory, files/data
and I/O devices.

•OS is responsible for the following process
management activities.

•Process creation and deletion
•Process suspension and resumption
•Process synchronization and interprocess communication
•Process interactions - deadlock detection, avoidance and
correction

120

OS Task: Memory Management

•Main Memory is an array of addressable words or
bytes.

•Main Memory is volatile.
•OS is responsible for:

• Allocate and deallocate memory to processes.
• Manage multiple processes within memory - keep track of
which parts of memory are used by which processes.
Manage the sharing of memory between processes.

• Determining which processes to load when memory
becomes available.

121

OS Task: Secondary Storage and I/O
Management

•Since primary storage (i.e., main memory) is
expensive and volatile, secondary storage is
required for backup.

•Disk is the primary form of secondary storage.
•OS performs storage allocation, free-space management,
etc. and disk scheduling.

•I/O subsystem in the OS consists of
•Device driver interface that abstracts device details
•Drivers for specific hardware devices

122

OS Task: File System Management

•File is a collection of related information -
represents programs and data.

•OS is responsible for
•File creation and deletion
•Directory creation and deletion
•Supporting primitives for file/directory manipulation.
•Mapping files to disks (secondary storage).
•Backup files on archival media (tapes).

123

OS Task: Protection and Security

•Protection mechanisms control access of processes to user
and system resources.

•Protection mechanisms must:
•Distinguish between authorized and unauthorized use.
•Specify access controls to be imposed on use.
•Provide mechanisms for enforcement of access control.
•Security mechanisms provide trust in system and privacy

• authentication, certification, encryption etc.

124

Summary of this week’s lecture

•What is an operating system?
•Operating systems history
•Computer system and operating system structure

125

